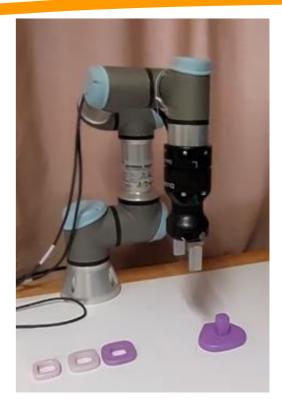
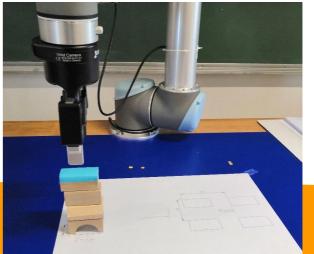


Sensibiliser à l'amélioration de la conso. énergétique et du temps de cycle sur des robots UR

Sylvain Miossec MCf IUT de Bourges / Dept. GMP

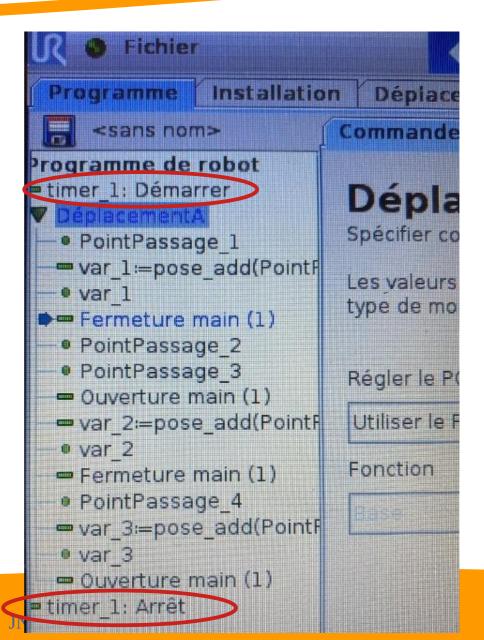
Plan



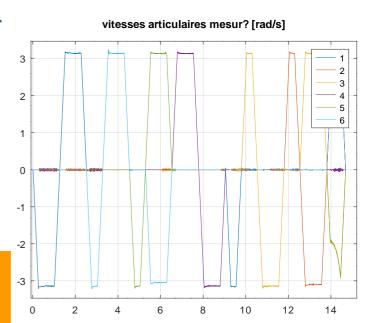

- Contexte et objectifs
- Mise en place des mesures
- Analyse de la consommation énergétique
- Résultats des étudiants
- Conclusion

Contexte et objectifs

- Niveau : Licence Pro 3ème année
- Nb h: 2x2h
- Sujet :
 - Améliorer la conso énergétique d'une tâche d'assemblage
 - Améliorer le temps de cycle d'une tâche de palettisation



Mise en place des mesures


- Temps de cycle
 - Timer

Mise en place des mesures

- Conso. énergétique
 - PC connecté par cable éthernet
 - Utilisation de la librairie RTDE (Real Time Data Exchange) avec python
 - Utilisation de l'exemple record.py
 - python record.py --host 192.168.1.1
 - On obtient les données en .csv avec Te=8ms
 - q, q, u, i, ...
 - Traitement avec Octave (~Matlab)

Analyse de la conso énergétique

UR3 avec Wattmètre

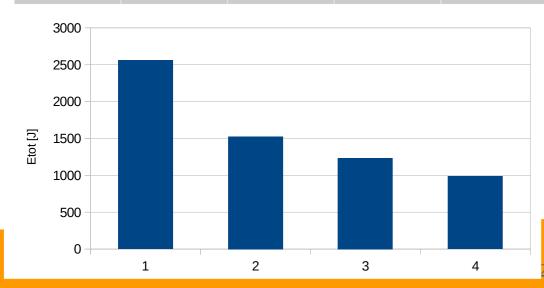
	Puissance	écart	Source
Allumage	~60W		Alim, PC, cartes ?
ON	~87W	27W	Convertisseurs de puissance ?
DEMARRER (freins relâchés)	~98W	11W	Moteurs?

UR3 RTDE

	Puissance robot (u*i)	Source
Partie constante	38W	Convertisseurs de puissance ?
Partie variable	0-140W moy 19W typique ^t	Pertes moteur, Convertisseur de puissance ?

- Part constante totale ~90W
- Part variable liée aux moteurs ~20W

Résultats étudiants



Conso énergétique

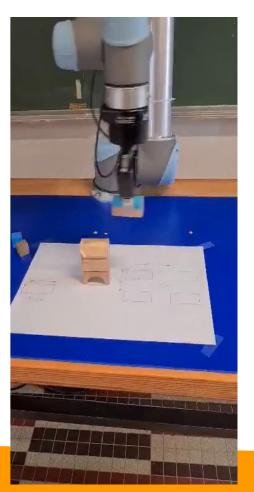
V [°/s]	60	120	150	180
A [°/s²]	80	160	180	?
P [W]	6,6	8,2	9,7	11,7
E [J]	180,7	131,6	123,8	116,9
Tcy [s]	27,4	16	12,8	10
Etot [J]	2563	1528	1234	986

Part variable

Avec part constante



Résultats étudiants



Tcy

V [°/s]	60	180	180	180
$A[^{\circ}/S^{2}]$	80	200	700	700
Tcy [s]	23	17	11	9,3

Amélioration chemin

Résultats étudiants

- Stratégies de réduction de Tcy utilisées
 - Vitesse et accélération max
 - Modifications de points intermédiaires (raccourcissement chemin)
 - Points de passage approchés (sans arrêt)
 - Déplacement de la pile de prise (raccourcissement chemin)
- Stratégies non utilisées
 - Déplacement de la tâche dans l'espace de travail
 - Mvt de pince plus court
 - Mvt articulaire/linéaire
- Applicable aussi pour la réduction de conso énergétique, mais moins motivés

Conclusion

- Intérêt des étudiants surtout pour la réduction du temps (compétition entre groupes)
- Difficulté à utiliser des positions relatives (pour pouvoir déplacer facilement la tâche dans l'espace de travail)
- Min conso énergie / tâche obtenue à vitesse max et acc. presque max (surtout avec part constante de conso énergétique)
 - Min conso énergie ~ min Tcy